2528/102 2922/102 ENVIRONMENTAL CHEMISTRY AND APPLIED SCIENCE Oct./Nov. 2019 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY MODULE I

ENVIRONMENTAL CHEMISTRY AND APPLIED SCIENCE

3 hours

INSTRUCTIONS TO CANDIDATES

You should have have the following for this examination:

An answer booklet:

Non-programmable scientific calculator.

This paper consists of TWO sections; A and B.

Answer ALL the questions in section A and any THREE questions from section B in the answer booklet provided.

Each question in section A carries 4 marks while each question in section B carries 20 marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (40 marks)

Answer ALL the questions in this section.

- 1. Define each the following terms:
 - (a) environmental chemistry;

(2 marks)

(b) atmospheric chemistry.

(2 marks)

Draw the chemical structure of 2, 2, 3-trimethyl pentane. 2. (a)

(2 marks)

- Write a balanced chemical equation for the reaction between ethene and hydrogen (b) chloride gas. (2 marks)
- 3. Name any four plant micronutrients present in the soil.

(4 marks)

- Three gases A, B and C in a vessel exert a total pressure of 101.3 kN/m2. The partial pressure 4. of A and B are 42.5 kN/m2 amd 30.5 kN/m2 respectively. Calculate the:
 - (a) partial pressure of gas C;

(2 marks)

mole fraction of gas B. (b)

(2 marks)

Solve the equations: $\frac{3}{x} + \frac{2}{y} = 14$.15.

$$\frac{3}{x} + \frac{2}{y} = 14$$

(4 marks)

- $\frac{5}{x} \frac{3}{y} = 2.$
- The total surface area of a closed cylindrical container is 20.0 m2. Calculate the radius of the 6. cylinder given that its height is 2.80 m. (4 marks)
- 7. Write the expression Log 8 - Log 4 + Log 32 in terms of Log 2.

(4 marks)

- 8. A model car moves round a circular track of radius 0.5 m at 3 revolutions per second. Determine its:
 - (a) angular velocity;

(2 marks)

linear speed. (b)

(2 marks)

- 9. Define each of the following terms as used in fluid mechanics:
 - (a) turbulent flow:

(2 marks)

newtonian fluid. (b)

(2 marks)

180

10. A brick wall 2 m high, 1 m wide and 15 cm thick is used to insulate a furnace. The temperature of the furnace is 1000°C and that of the outer wall is 40°C. Calculate the rate of heat loss through the wall given that its thermal conductivity is 0.04 W/m.K. (4 marks)

SECTION B (60 marks)

Answer any THREE questions from this section.

11. (a) Define the term soil.

(2 marks)

(b) With the aid of a labelled diagram, describe the four main layers of soil profile.

(8 marks)

(c) Figure 1 shows nitrogen sinks and pathways in soil.

Fig. 1: Nitrogen Sinks and Pathways

- (i) Identify products A, B, C and D. (4 marks)
- (ii) Name process E and F. (2 marks)
- (iii) Explain process E. (2 marks)
- (iv) Describe nitrogen fixation in legumes. (2 marks)

12.	(a)	State each of the following laws:		
		(i) Newton's first law of motion;	(2 marks	
		(ii) Newton's second law of motion;	(2 marks	
		(iii) Law of conservation of momentum.	(2 marks	
	(b)	A resultant force of 25 N acts on a mass of 0.5 kg initially at rest. Calculate the:		
		(i) acceleration;	(2 marks	
		(ii) final velocity after 20 s;	(3 marks	
		(iii) distance moved.	(3 marks	
	(c)	(i) An arrow of mass 100 g is shot at 15 m/s into a block of wood of mass 400 g lying at rest on a smooth surface. Calculate the common velocity after impact. (3 marks		
		(ii) The block in (c) (i) is struck by a second arrow of mass 100 g trave 12 m/s. Calculate the common velocity after impact.	elling at (3 marks	
13.	(a)	State five properties of cathode rays.	(5 marks	
	(b)	Draw a labelled diagram showing the main parts of a cathode ray oscilloso	cope. (6 marks	
	(c)	Describe the working of an electron gun in the cathode ray oscilloscope.	(4 marks	
	(d)	The Y-plates of a cathode ray oscilloscope (CRO) is connected to an alternating current (a.c) with the time base set at 6 ms/div and the Y-gain at 120v/div. The trace on the CRO screen showed the number of division covered as 8 and the number of cycles as 2. Determine the frequency of the a.c signal. (5 marks		
14.	(a)	A surveyor measures the angle of elevation at the top of a perpendicular building as 20°. He moves 100 m nearer to the building and finds that the angle of elevation is 50°. Determine the height of the building. (6 marks)		
	(b)	A triangle ABC has sides $a = 7.5$ cm, $b = 6$ cm and $c = 7$ cm. Determine:		
		(i) the three angles;	(6 marks)	
		(ii) area of the triangle.	(4 marks)	

(c) Prove the following trigonometric identity.

$$\frac{Cos x - Cos^3 x}{Sin x} = Sin x Cos x$$

15. (a) Differentiate the equation
$$y = \frac{(x+2)^2}{x}$$
. (4 marks)

(b) Determine the coordinates of the point where the gradient is −1 on the curve,

$$y = 3x^2 - 7x + 2 \tag{4 marks}$$

- (c) A missile fired from ground level rising x metres vertically upwards in t seconds is given by $x = 100 t \frac{25t^2}{2}$. Determine the:
 - (i) initial velocity of the missile; (3 marks)
 - (ii) time taken when the height of the missile is a maximum; (2 marks)
 - (iii) maximum height reached; (2 marks)
 - (iv) velocity with which the missile strikes the ground; (3 marks)
 - (v) acceleration after 2 s. (2 marks)

THIS IS THE LAST PRINTED PAGE.